
1

UNIT -III

Unit 3 – Microprogrammed Control

Hardwired Control Unit:
When the control signals are generated by hardware using conventional logic design techniques,
the control unit is said to be hardwired.

Micro programmed control unit:
A control unit whose binary control variables are stored in memory is called a micro programmed
control unit.

Dynamic microprogramming:
A more advanced development known as dynamic microprogramming permits a microprogram to
be loaded initially from an auxiliary memory such as a magnetic disk. Control units that use
dynamic microprogramming employ a writable control memory. This type of memory can be
used for writing.

Control Memory:
Control Memory is the storage in the microprogrammed control unit to store the microprogram.

Writeable Control Memory:
Control Storage whose contents can be modified, allow the change in microprogram and
Instruction set can be changed or modified is referred as Writeable Control Memory.

Control Word:
The control variables at any given time can be represented by a control word string of 1 's and 0's
called a control word.

Microoperation, Microinstruction, Micro program, Microcode.

Microoperations:
 In computer central processing units, micro-operations (also known as a micro-ops or

μops) are detailed low-level instructions used in some designs to implement complex
machine instructions (sometimes termed macro-instructions in this context).

Micro instruction:
 A symbolic microprogram can be translated into its binary equivalent by means of an

assembler.
 Each line of the assembly language microprogram defines a symbolic microinstruction.

 Each symbolic microinstruction is divided into five fields: label, microoperations, CD,

BR, and AD.

2

UNIT -III

Unit 3 – Microprogrammed Control

Micro program:
 A sequence of microinstructions constitutes a microprogram.

 Since alterations of the microprogram are not needed once the control unit is in operation,

the control memory can be a read-only memory (ROM).
 ROM words are made permanent during the hardware production of the unit.

 The use of a micro program involves placing all control variables in words of ROM for

use by the control unit through successive read operations.
 The content of the word in ROM at a given address specifies a microinstruction.

Microcode:
 Microinstructions can be saved by employing subroutines that use common sections of

microcode.
 For example, the sequence of micro operations needed to generate the effective address of

the operand for an instruction is common to all memory reference instructions.
 This sequence could be a subroutine that is called from within many other routines to

execute the effective address computation.

Organization of micro programmed control unit
 The general configuration of a micro-programmed control unit is demonstrated in the

block diagram of Figure 4.1.
 The control memory is assumed to be a ROM, within which all control information is

permanently stored.

figure 4.1: Micro-programmed control organization
 The control memory address register specifies the address of the microinstruction, and the

control data register holds the microinstruction read from memory.
 The microinstruction contains a control word that specifies one or more microoperations

for the data processor. Once these operations are executed, the control must determine the
next address.

 The location of the next microinstruction may be the one next in sequence, or it may be
located somewhere else in the control memory.

3

UNIT -III

Microprogrammed Control

 While the microoperations are being executed, the next address is computed in the next
address generator circuit and then transferred into the control address register to read the
next microinstruction.

 Thus a microinstruction contains bits for initiating microoperations in the data processor
part and bits that determine the address sequence for the control memory.

 The next address generator is sometimes called a micro-program sequencer, as it
determines the address sequence that is read from control memory.

 Typical functions of a micro-program sequencer are incrementing the control address
register by one, loading into the control address register an address from control memory,
transferring an external address, or loading an initial address to start the control
operations.

 The control data register holds the present microinstruction while the next address is

computed and read from memory.
 The data register is sometimes called a pipeline register.

 It allows the execution of the microoperations specified by the control word

simultaneously with the generation of the next microinstruction.
 This configuration requires a two-phase clock, with one clock applied to the address

register and the other to the data register.
 The main advantage of the micro programmed control is the fact that once the hardware

configuration is established; there should be no need for further hardware or wiring
changes.

 If we want to establish a different control sequence for the system, all we need to do is
specify a different set of microinstructions for control memory.

Address Sequencing
 Microinstructions are stored in control memory in groups, with each group specifying a

routine.
 To appreciate the address sequencing in a micro-program control unit, let us specify the

steps that the control must undergo during the execution of a single computer instruction.

Step-1:
 An initial address is loaded into the control address register when power is turned on in

the computer.
 This address is usually the address of the first microinstruction that activates the

instruction fetch routine.
 The fetch routine may be sequenced by incrementing the control address register through

the rest of its microinstructions.
 At the end of the fetch routine, the instruction is in the instruction register of the

computer.

4

UNIT -III

Microprogrammed Control

Step-2:
 The control memory next must go through the routine that determines the effective

address of the operand.
 A machine instruction may have bits that specify various addressing modes, such as

indirect address and index registers.
 The effective address computation routine in control memory can be reached through a

branch microinstruction, which is conditioned on the status of the mode bits of the
instruction.

 When the effective address computation routine is completed, the address of the operand
is available in the memory address register.

Step-3:
 The next step is to generate the microoperations that execute the instruction fetched from

memory.
 The microoperation steps to be generated in processor registers depend on the operation

code part of the instruction.
 Each instruction has its own micro-program routine stored in a given location of control

memory.
 The transformation from the instruction code bits to an address in control memory where

the routine is located is referred to as a mapping process.
 A mapping procedure is a rule that transforms the instruction code into a control

memory address.

Step-4:
 Once the required routine is reached, the microinstructions that execute the instruction

may be sequenced by incrementing the control address register.
 Micro-programs that employ subroutines will require an external register for storing the

return address.
 Return addresses cannot be stored in ROM because the unit has no writing capability.

 When the execution of the instruction is completed, control must return to the fetch

routine.
 This is accomplished by executing an unconditional branch microinstruction to the first

address of the fetch routine.

In summary, the address sequencing capabilities required in a control memory are:
1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.

5

UNIT -III

Microprogrammed Control

selection of address for control memory

Figure 4.2: Selection of address for control memory

 Above figure 4.2 shows a block diagram of a control memory and the associated hardware
needed for selecting the next microinstruction address.

 The microinstruction in control memory contains a set of bits to initiate microoperations

in computer registers and other bits to specify the method by which the next address is

obtained.

 The diagram shows four different paths from which the control address register (CAR)
receives the address.

 The incrementer increments the content of the control address register by one, to select the

next microinstruction in sequence.

 Branching is achieved by specifying the branch address in one of the fields of the
microinstruction.

 Conditional branching is obtained by using part of the microinstruction to select a specific

status bit in order to determine its condition.
 An external address is transferred into control memory via a mapping logic circuit.

 The return address for a subroutine is stored in a special register whose value is then used

when the micro-program wishes to return from the subroutine.

6

UNIT -III

Microprogrammed Control

 The branch logic of figure 4.2 provides decision-making capabilities in the control unit.

 The status conditions are special bits in the system that provide parameter information
such as the carry-out of an adder, the sign bit of a number, the mode bits of an instruction,
and input or output status conditions.

 The status bits, together with the field in the microinstruction that specifies a branch
address, control the conditional branch decisions generated in the branch logic.

 A 1 output in the multiplexer generates a control signal to transfer the branch address
from the microinstruction into the control address register.

 A 0 output in the multiplexer causes the address register to be incremented.

Mapping of an Instruction
 A special type of branch exists when a microinstruction specifies a branch to the first

word in control memory where a microprogram routine for an instruction is located.
 The status bits for this type of branch are the bits in the operation code part of the

instruction.
For example, a computer with a simple instruction format as shown in figure 4.3 has an
operation code of four bits which can specify up to 16 distinct instructions.

 Assume further that the control memory has 128 words, requiring an address of seven
bits.

 One simple mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in figure 4.3.

 This mapping consists of placing a 0 in the most significant bit of the address, transferring
the four operation code bits, and clearing the two least significant bits of the control
address register.

 This provides for each computer instruction a microprogram routine with a capacity of
four microinstructions.

 If the routine needs more than four microinstructions, it can use addresses 1000000
through 1111111. If it uses fewer than four microinstructions, the unused memory
locations would be available for other routines.

Figure 4.3: Mapping from instruction code to microinstruction

address

 One can extend this concept to a more general mapping rule by using a ROM to specify

the mapping function.
 The contents of the mapping ROM give the bits for the control address register.

7

UNIT -III

Microprogrammed Control

 In this way the microprogram routine that executes the instruction can be placed in any
desired location in control memory.

 The mapping concept provides flexibility for adding instructions for control memory as
the need arises.

Computer Hardware Configuration

Figure 4.4: Computer hardware configuration
The block diagram of the computer is shown in Figure 4.4. It consists of

1. Two memory units:
Main memory -> for storing instructions and data, and
Control memory -> for storing the microprogram.

2. Six Registers:
Processor unit register: AC(accumulator),PC(Program Counter), AR(Address Register),
DR(Data Register)
Control unit register: CAR (Control Address Register), SBR(Subroutine Register)

3. Multiplexers:
The transfer of information among the registers in the processor is done through
multiplexers rather than a common bus.

4. ALU:
The arithmetic, logic, and shift unit performs microoperations with data from AC and DR
and places the result in AC.

8

UNIT -III

Unit 4 – Microprogrammed Control

 DR can receive information from AC, PC, or memory.
 AR can receive information from PC or DR.

 PC can receive information only from AR.

 Input data written to memory come from DR, and data read from memory can go only to
DR.

Microinstruction Format
The microinstruction format for the control memory is shown in figure 4.5. The 20 bits of the
microinstruction are divided into four functional parts as follows:

1. The three fields F1, F2, and F3 specify microoperations for the computer.
The microoperations are subdivided into three fields of three bits each. The three bits in
each field are encoded to specify seven distinct microoperations. This gives a total of 21
microoperations.

2. The CD field selects status bit conditions.

3. The BR field specifies the type of branch to be used.
4. The AD field contains a branch address. The address field is seven bits wide, since the

control memory has 128 = 2
7
 words.

Figure 4.5: Microinstruction Format
 As an example, a microinstruction can specify two simultaneous microoperations from

F2 and F3 and none from F1.
DR M[AR] with F2 = 100
PC PC + 1 with F3 = 101

 The nine bits of the microoperation fields will then be 000 100 101.

 The CD (condition) field consists of two bits which are encoded to specify four status bit
conditions as listed in Table 4.1.

Table 4.1: Condition Field

 The BR (branch) field consists of two bits. It is used, in conjunction with the address field

AD, to choose the address of the next microinstruction shown in Table 4.2.

9

UNIT -III

Microprogrammed Control

Table 4.2: Branch Field

Symbolic Microinstruction.

 Each line of the assembly language microprogram defines a symbolic microinstruction.
 Each symbolic microinstruction is divided into five fields: label, microoperations, CD,

BR, and AD. The fields specify the following Table 4.3.

1. Label The label field may be empty or it may specify a symbolic

 address. A label is terminated with a colon (:).

2. Microoperations It consists of one, two, or three symbols, separated by

 commas, from those defined in Table 5.3. There may be no

 more than one symbol from each F field. The NOP symbol

 is used when the microinstruction has no microoperations.

 This will be translated by the assembler to nine zeros.

3. CD The CD field has one of the letters U, I, S, or Z.

4. BR The BR field contains one of the four symbols defined in

 Table 5.2.

5. AD The AD field specifies a value for the address field of the

 microinstruction in one of three possible ways:

 i. With a symbolic address, this must also appear as a

 label.

 ii. With the symbol NEXT to designate the next

 address in sequence.

 iii. When the BR field contains a RET or MAP symbol,

 the AD field is left empty and is converted to seven

 zeros by the assembler.

 Table 4.3: Symbolic Microinstruction

10

UNIT -III

Microprogrammed Control

 Micro programmed sequencer for a control memory

Microprogram sequencer:
 The basic components of a microprogrammed control unit are the control memory and the

circuits that select the next address.
 The address selection part is called a microprogram sequencer.

 A microprogram sequencer can be constructed with digital functions to suit a particular

application.
 To guarantee a wide range of acceptability, an integrated circuit sequencer must provide

an internal organization that can be adapted to a wide range of applications.
 The purpose of a microprogram sequencer is to present an address to the control memory

so that a microinstruction may be read and executed.
 Commercial sequencers include within the unit an internal register stack used for

temporary storage of addresses during microprogram looping and subroutine calls.
 Some sequencers provide an output register which can function as the address register for

the control memory.
 The block diagram of the microprogram sequencer is shown in figure 4.6.

 There are two multiplexers in the circuit.

 The first multiplexer selects an address from one of four sources and routes it into a
control address register CAR.

 The second multiplexer tests the value of a selected status bit and the result of the test is
applied to an input logic circuit.

 The output from CAR provides the address for the control memory.

 The content of CAR is incremented and applied to one of the multiplexer inputs and to
the subroutine registers SBR.

 The other three inputs to multiplexer 1 come from the address field of the present
microinstruction, from the output of SBR, and from an external source that maps the
instruction.

 Although the figure 4.6 shows a single subroutine register, a typical sequencer will have a
register stack about four to eight levels deep. In this way, a number of subroutines can be
active at the same time.

 The CD (condition) field of the microinstruction selects one of the status bits in the
second multiplexer.

 If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal to
0.

 The T value together with the two bits from the BR (branch) field goes to an input logic
circuit.

 The input logic in a particular sequencer will determine the type of operations that are
available in the unit.

11

UNIT -III

Microprogrammed Control

l0 Input

3 2 1 0

Load

l1 Logic

 S

1

MU

X 1

SBR

T

S

0

Test Increment
1 MUX 2

L

Select

Clock CAR

Microo

ps

Control

Memory

CD BR

AD

Figure 4.6: Microprogram Sequencer for a control memory

Input Logic : Truth Table

 BR Input MUX 1 Load SBR

 I1 I0 T S1 S0 L

 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 1 0

 0 1 0 1 0 0 0 0

 0 1 0 1 1 0 1 1

 1 0 1 0 X 1 0 0

 1 1 1 1 X 1 1 0

12

UNIT -III

 Table 4.4: Input Logic Truth Table for Microprogram Sequencer

Microprogrammed Control

Boolean Function:
S0 = I0

S1 = I0I1 + I0’T

L = I0’I1T

 Typical sequencer operations are: increment, branch or jump, call and return from

subroutine, load an external address, push or pop the stack, and other address sequencing
operations.

 With three inputs, the sequencer can provide up to eight address sequencing operations.
 Some commercial sequencers have three or four inputs in addition to the T input and thus

provide a wider range of operations.

Central Processing Unit

· General Register Organization :

·

· The Central Processing Unit (CPU) is called the brain of the computer that performs data-

processing operations. Figure 3.1 shows the three major parts of CPU.
·

·

Intermediate data is stored in the register set during the execution of the instructions. The

microoperations required for executing the instructions are performed by the arithmetic logic unit

whereas the control unit takes care of transfer of information among the registers and guides the

ALU. The control unit services the transfer of information among the registers and instructs the

ALU about which operation is to be performed. The computer instruction set is meant for

providing the specifications for the design of the CPU. The design of the CPU largely, involves

choosing the hardware for implementing the machine instructions.
·
· The need for memory locations arises for storing pointers, counters, return address,

temporary results and partial products. Memory access consumes the most of the time off an
operation in a computer. It is more convenient and more efficient to store these intermediate

values in processor registers.

13

UNIT -III

· A common bus system is employed to contact registers that are included in the CPU in a
large number. Communications between registers is not only for direct data transfer but also for

performing various micro-operations. A bus organization for such CPU register shown in Figure
3.2, is connected to two multiplexers (MUX) to form two buses A and B. The selected lines in

each multiplexers select one register of the input data for the particular bus.

·

OPERATION OF CONTROL UNIT:

The control unit directs the information flow through ALU by:

 - Selecting various Components in the system

 - Selecting the Function of ALU

Example: R1 <- R2 + R3

1] MUX A selector (SELA): BUS A R2

[2] MUX B selector (SELB): BUS B R3

[3] ALU operation selector (OPR): ALU to ADD

[4] Decoder destination selector (SELD): R1 Out Bus

Control Word

14

UNIT -III

Encoding of register selection fields

Encoding of ALU operations

 Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

15

UNIT -III

Stack organization:
 A stack is a storage device that stores information in such a manner that the item stored

last is the first item retrieved.
 The stack in digital computers is essentially a memory unit with an address register that

can count only. The register that holds the address for the stack is called a stack pointer
(SP) because its value always points at the top item in the stack.

 The physical registers of a stack are always available for reading or writing. It is the

content of the word that is inserted or deleted.

Register stack:

Figure 5.1: Block diagram of a 64-word stack

 A stack can be placed in a portion of a large memory or it can be organized as a collection

of a finite number of memory words or registers. Figure shows the organization of a 64-
word register stack.

 The stack pointer register SP contains a binary number whose value is equal to the address

of the word that is currently on top of the stack. Three items are placed in the stack: A, B,
and C, in that order. Item C is on top of the stack so that the content of SP is now 3.

16

UNIT -III

 To remove the top item, the stack is popped by reading the memory word at address 3 and
decrementing the content of SP. Item B is now on top of the stack since SP holds address
2.

 To insert a new item, the stack is pushed by incrementing SP and writing a word in the
next-higher location in the stack.

 In a 64-word stack, the stack pointer contains 6 bits because 2
6
 = 64.

 Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in binary).

When 63 are incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but
SP can accommodate only the six least significant bits.

 Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit register
FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to 1 when the
stack is empty of items.

 DR is the data register that holds the binary data to be written into or read out of the stack.

PUSH:
 If the stack is not full (FULL =0), a new item is inserted with a push operation. The push

operation consists of the following sequences of microoperations:

SP ← SP + 1 Increment stack pointer

M [SP] ← DR WRITE ITEM ON TOP OF THE STACK

IF (SP = 0) then (FULL ← 1) Check is stack is full

EMTY ← 0 Mark the stack not empty

 The stack pointer is incremented so that it points to the address of next-higher word. A

memory write operation inserts the word from DR into the top of the stack.
 SP holds the address of the top of the stack and that M[SP] denotes the memory word

specified by the address presently available in SP.
 The first item stored in the stack is at address 1. The last item is stored at address 0. If SP

reaches 0, the stack is full of items, so FULL is set to 1. This condition is reached if the
top item prior to the last push was in location 63 and, after incrementing SP, the last item
is stored in location 0.

 Once an item is stored in location 0, there are no more empty registers in the stack. If an

item is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to 0.

POP:
 A new item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop

operation consists of the following sequences of microoperations:

DR ← M [SP] Read item on top of the stack

SP ← SP - 1 Decrement stack pointer

IF (SP = 0) then (EMTY ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

17

UNIT -III

 The top item is read from the stack into DR. The stack pointer is then decremented. If its

value reaches zero, the stack is empty, so EMTY is set to 1.

 This condition is reached if the item read was in location 1.

 Once this item is read out, SP is decremented and reaches the value 0, which is the initial
value of SP. If a pop operation reads the item from location 0 and then SP is decremented,
SP is changes to 111111, which is equivalent to decimal 63.

 In this configuration, the word in address 0 receives the last item in the stack. Note also
that an erroneous operation will result if the stack is pushed when FULL = 1 or popped
when EMTY = 1.

Memory Stack.

Figure 5.2: Computer memory with program, data, and stack segments

 The implementation of a stack in the CPU is done by assigning a portion of memory to a

stack operation and using a processor register as a stack pointer.
 Figure 5.2 shows a portion of computer memory partitioned into three segments: program,

data, and stack.
 The program counter PC points at the address of the next instruction in the program which

is used during the fetch phase to read an instruction.

18

UNIT -III

 The address registers AR points at an array of data which is used during the execute phase
to read an operand.

 The stack pointer SP points at the top of the stack which is used to push or pop items into
or from the stack.

 The three registers are connected to a common address bus, and either one can provide an
address for memory.

 As shown in Figure 5.2, the initial value of SP is 4001 and the stack grows with
decreasing addresses. Thus the first item stored in the stack is at address 4000, the second
item is stored at address 3999, and the last address that can be used for the stack is 3000.

 We assume that the items in the stack communicate with a data register DR.

PUSH
 A new item is inserted with the push operation as follows:

SP ← SP -
1 M[SP] ←
DR

 The stack pointer is decremented so that it points at the address of the next word.

 A memory write operation inserts the word from DR into the top of the stack.

POP
 A new item is deleted with a pop operation as follows:

DR ←
M[SP] SP
← SP + 1

 The top item is read from the stack into DR.

 The stack pointer is then incremented to point at the next item in the stack.

 The two microoperations needed for either the push or pop are (1) an access to memory
through SP, and (2) updating SP.

 Which of the two microoperations is done first and whether SP is updated by
incrementing or decrementing depends on the organization of the stack.

 In figure. 5.2 the stack grows by decreasing the memory address. The stack may be
constructed to grow by increasing the memory also.

 The advantage of a memory stack is that the CPU can refer to it without having to specify
an address, since the address is always available and automatically updated in the stack
pointer.

Instruction formats:

Insruction fields:

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)

Mode field - specifies the way the operand or the effective address is determined.

The number of address fields in the instruction format depends on the internal organization of CPU

-

19

UNIT -III

The three most common CPU organizations:

20

UNIT -III

ADDRESSING MODES :

* Specifies a rule for interpreting or modifying the address field of the instruction (before the operand is

actually referenced)

 * Variety of addressing modes

 - to give programming flexibility to the user

 - to use the bits in the address field of the

 instruction efficiently

 TYPES OF ADDRESSING MODES :

21

UNIT -III

Register Indirect Mode
 Instruction specifies a register which contains the memory address of the operand

 - Saving instruction bits since register addres is shorter than the memory address

 - Slower to acquire an operand than both the register addressing or memory addressing

 - EA = [IR(R)] ([x]: Content of x)

 Auto-increment or Auto-decrement features:
 Same as the Register Indirect, but:

 - When the address in the register is used to access memory, the value in the register is incremented

or decremented by 1 (after or before the execution of the instruction)

Direct Address Mode
 Instruction specifies the memory address which can be used directly to the physical memory

 - Faster than the other memory addressing modes

 - Too many bits are needed to specify the address for a large physical memory space

 - EA = IR(address), (IR(address): address field of IR)

Indirect Addressing Mode
 The address field of an instruction specifies the address of a memory location that contains the

address of the operand

 - When the abbreviated address is used, large physical memory can be addressed with a relatively

small number of bits

 - Slow to acquire an operand because of an additional memory access

 - EA = M[IR(address)]

Relative Addressing Modes
 The Address fields of an instruction specifies the part of the address(abbreviated address) which

can be used along with a designated register to calculate the address of the operand

 PC Relative Addressing Mode(R = PC)

 - EA = PC + IR(address)

 - Address field of the instruction is short

 - Large physical memory can be accessed with a small number of address bits

Indexed Addressing Mode
 XR: Index Register:

 - EA = XR + IR(address)

Base Register Addressing Mode
 BAR: Base Address Register:

 - EA = BAR + IR(address)

22

UNIT -III

cpe 252: Computer Organization 18

ADDRESSING MODES - EXAMPLES

Addressing
Mode

Effective
Address

Content
of AC

Direct address 500 /* AC (500) */ 800
Immediate operand - /* AC 500 */ 500
Indirect address 800 /* AC ((500)) */ 300
Relative address 702 /* AC (PC+500) */ 325
Indexed address 600 /* AC (XR+500) */ 900
Register - /* AC R1 */ 400
Register indirect 400 /* AC (R1) */ 700
Autoincrement 400 /* AC (R1)+ */ 700
Autodecrement 399 /* AC -(R) */ 450

Load to AC Mode

Address = 500

Next instruction

200

201

202

399

400

450

700

500 800

600 900

702 325

800 300

MemoryAddress

PC = 200

R1 = 400

XR = 100

AC

Data Transfer Instructions.
 Data transfer instructions move data from one place in the computer to another without

changing the data content.
 The most common transfers are between memory and processor registers, between

processor registers and input or output, and between the processor registers themselves.
 The load instruction has been used mostly to designate a transfer from memory to a

processor register, usually an accumulator.
 The store instruction designates a transfer from a processor register into memory.

 The move instruction has been used in computers with multiple CPU registers to designate

a transfer from one register to another. It has also been used for data transfers between
CPU registers and memory or between two memory words.

 The exchange instruction swaps information between two registers or a register and a
memory word.

 The input and output instructions transfer data among processor registers and input or
output terminals.

 The push and pop instructions transfer data between processor registers and a memory
stack.

23

UNIT -III

Data Transfer Instructions with Different Addressing Modes

24

UNIT -III

cpe 252: Computer Organization 20

DATA MANIPULATION INSTRUCTIONS
Three Basic Types: Arithmetic instructions

Logical and bit manipulation instructions
Shift instructions

Arithmetic Instructions
Name Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right thru carry RORC
Rotate left thru carry ROLC

Name Mnemonic

Logical and Bit Manipulation Instructions Shift Instructions

Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with Borrow SUBB
Negate(2’s Complement) NEG

PROGRAM CONTROL INSTRUCTIONS :
 It is sometimes convenient to supplement the ALU circuit in the CPU with a status

register where status bit conditions be stored for further analysis. Status bits are also
called condition-code bits or flag bits.

 Figure 5.3 shows the block diagram of an 8-bit ALU with a 4-bit status register. The four
status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

Figure 5.3: Status Register Bits

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.
2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if set to 0 if the

bit is 0.

25

UNIT -III

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. it is cleared to 0
otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output is not
zero.

4. Bit V (overflow) is set to 1 if the exclusives-OR of the last two carries is equal to
1, and cleared to 0 otherwise. This is the condition for an overflow when negative
numbers are in 2’s complement. For the 8-bit ALU, V = 1 if the output is greater
than + 127 or less than -128.

 The status bits can be checked after an ALU operation to determine certain relationships
that exist between the vales of A and B.

 If bit V is set after the addition of two signed numbers, it indicates an overflow condition.

 If Z is set after an exclusive-OR operation, it indicates that A = B.

 A single bit in A can be checked to determine if it is 0 or 1 by masking all bits except the
bit in question and then checking the Z status bit.

 Program Control Instructions

CMP and TST instructions do not retain their results of operations(- and AND, respectively).

 They only set or clear certain Flags.

26

UNIT -III

cpe 252: Computer Organization 22

CONDITIONAL BRANCH INSTRUCTIONS

BZ Branch if zero Z = 1
BNZ Branch if not zero Z = 0
BC Branch if carry C = 1
BNC Branch if no carry C = 0
BP Branch if plus S = 0
BM Branch if minus S = 1
BV Branch if overflow V = 1
BNV Branch if no overflow V = 0

BHI Branch if higher A > B
BHE Branch if higher or equal A B
BLO Branch if lower A < B
BLOE Branch if lower or equal A B
BE Branch if equal A = B
BNE Branch if not equal A B

BGT Branch if greater than A > B
BGE Branch if greater or equal A B
BLT Branch if less than A < B
BLE Branch if less or equal A B
BE Branch if equal A = B
BNE Branch if not equal A B

Unsigned compare conditions (A - B)

Signed compare conditions (A - B)

Mnemonic Branch condition Tested condition

cpe 252: Computer Organization 23

SUBROUTINE CALL AND RETURN
Call subroutine
Jump to subroutine
Branch to subroutine
Branch and save return address

• Fixed Location in the subroutine(Memory)
• Fixed Location in memory
• In a processor Register
• In a memory stack

- most efficient way

SUBROUTINE CALL

Two Most Important Operations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* Save the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

- Locations for storing Return Address: CALL
SP SP - 1
M[SP] PC
PC EA

RTN
PC M[SP]
SP SP + 1

27

UNIT -III

PROGRAM INTERRUPT:
 The concept of program interrupt is used to handle a variety of problems that arise out of

normal program sequence.
 Program interrupt refers to the transfer of program control from a currently running program

to another service program as a result of an external or internal generated request. Control
returns to the original program after the service program is executed.

 After a program has been interrupted and the service routine been executed, the CPU must
return to exactly the same state that it was when the interrupt occurred.

 Only if this happens will the interrupted program be able to resume exactly as if nothing had
happened.

 The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is
determined from:

1. The content of the program counter

2. The content of all processor registers

3. The content of certain status conditions

 The interrupt facility allows the running program to proceed until the input or output device
sets its ready flag. Whenever a flag is set to 1, the computer completes the execution of the
instruction in progress and then acknowledges the interrupt.

 The result of this action is that the retune address is stared in location 0. The instruction in
location 1 is then performed; this initiates a service routine for the input or output transfer.
The service routine can be stored in location 1.

 The service routine must have instructions to perform the following tasks:

1. Save contents of processor registers.

2. Check which flag is set.
3. Service the device whose flag is set.

4. Restore contents of processor registers.

5. Turn the interrupt facility on.

6. Return to the running program.

28

UNIT -III

Types of interrupts.:
There are three major types of interrupts that cause a break in the normal execution of a program.
They can be classified as:

1. External interrupts
2. Internal interrupts

3. Software interrupts

1) External interrupts:

 External interrupts come from input-output (I/0) devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source.

 Examples that cause external interrupts are I/0 device requesting transfer of data, I/o device
finished transfer of data, elapsed time of an event, or power failure. Timeout interrupt may
result from a program that is in an endless loop and thus exceeded its time allocation.

 Power failure interrupt may have as its service routine a program that transfers the complete
state of the CPU into a nondestructive memory in the few milliseconds before power ceases.

 External interrupts are asynchronous. External interrupts depend on external conditions that
are independent of the program being executed at the time.

2) Internal interrupts:

 Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal
interrupts are also called traps.

 Examples of interrupts caused by internal error conditions are register overflow, attempt to
divide by zero, an invalid operation code, stack overflow, and protection violation. These
error conditions usually occur as a result of a premature termination of the instruction
execution. The service program that processes the internal interrupt determines the corrective
measure to be taken.

 Internal interrupts are synchronous with the program. . If the program is rerun, the internal

interrupts will occur in the same place each time.

3) Software interrupts:
 A software interrupt is a special call instruction that behaves like an interrupt rather than a

subroutine call. It can be used by the programmer to initiate an interrupt procedure at any
desired point in the program.

 The most common use of software interrupt is associated with a supervisor call instruction.
This instruction provides means for switching from a CPU user mode to the supervisor mode.
Certain operations in the computer may be assigned to the supervisor mode only, as for
example, a complex input or output transfer procedure. A program written by a user must run
in the user mode.

 When an input or output transfer is required, the supervisor mode is requested by means of a

supervisor call instruction. This instruction causes a software interrupt that stores the old CPU
state and brings in a new PSW that belongs to the supervisor mode.

 The calling program must pass information to the operating system in order to specify the

particular task requested.

29

UNIT -III

Reverse Polish Notation (RPN) with appropriate example.
 The postfix RPN notation, referred to as Reverse Polish Notation (RPN), places the

operator after the operands.
 The following examples demonstrate the three representations:

A + B Infix notation

+ A B Prefix or Polish notation

A B + Postfix or reverse Polish notation

 The reverse Polish notation is in a form suitable for stack manipulation.

The expression
A * B + C * D is written in reverse Polish notation as
A B * C D * +

 The conversion from infix notation to reverse Polish notation must take into consideration
the operational hierarchy adopted for infix notation.

 This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then
inside outer parentheses, and do multiplication and division operations before addition
and subtraction operations.

Evaluation of Arithmetic Expressions
 Any arithmetic expression can be expressed in parenthesis-free Polish notation, including

reverse Polish notation
(3 * 4) + (5 * 6) 3 4 * 5 6 * +

REFERENCE :

1. COMPUTER SYSTEM ARCHITECTURE, MORRIS M. MANO, 3RD EDITION, PRENTICE HALL

INDIA.

